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LETTER TO THE EDITOR 

The state with a spontaneous supercurrent on the 
surface of superfluid 3He-B 

T Sh Misirpashaev and G E Volovik 
LD Landau Institute for Theoretical Physics, Kosygin St 2,117334, Moscow, USSR 

Received 14 June 1990 

Abstract. A new metastable surface state on the boundary of 'He-B is found analytically in 
the vicinity of the first-order transition line between 'He-B and 3He-A. This state consists of 
an A-phase layer separated from the B phase in bulk liquid by a conventional A-B interface. 
As distinct from all other surface states obtained by calculation so far, this state has a 
spontaneous mass supercurrent along the surface. 

Several different experiments have indicated the possibility of there being a new state 
on the surface of superfluid 3He-B. Fal'ko (1985), trying to explain the first-order phase 
transition observed in a gyroscopic experiment (Pekola and Simola 1985), proposed that 
in addition to the conventional surface layer with a planar state on the boundary of the 
vessel (Cross 1977) there may exist a surface state with spontaneously broken symmetry 
that has a spontaneous mass supercurrent along the boundary. 

Thuneberg (1986), motivated by the same experiment as well as by an experiment 
performed by Ling et a1 (1984), calculated the surface layer structure within the Ginz- 
burg-Landau theory near the normal-superfluid transition temperature T,. He found 
that, in addition to the most symmetric conventional surface state, with surface energy 
og" = 0.76c( T)fB (here E( T )  is the temperature-dependent coherence length and fB 

is the superfluid condensation energy density in 3He-B), at high pressure there exists a 
less symmetric metastable state together with the A-phase layer on the boundary. It has 
higher energy, =1.205(T)fB, and corresponds to the local minimum of the Ginzburg- 
Landau free energy. It becomes absolutely stable if a high enough external supercurrent 
is applied. Salomaa and Volovik (1989), who tried to explain an abnormal parity effect 
observed in NMR experiments on the vortex free state (Hakonen and Nummila 1987), 
proposed a phenomenological model for the boundary conditions that makes this state 
absolutely stable in some cases even without an external supercurrent. This is, however, 
not yet confirmed in the microscopic theory. 

The metastable surface state found by Thuneberg is reminiscent, as regards its 
symmetry and order parameter structure, of the A-B walls trapped by the vessel 
boundary with the A-phase side of the wall attached to the boundary of the vessel. In 
the open geometry there are several types of A-B interfaces, differing ininternal 
symmetry (Schopohl1987, Salomaa 1988). The equilibrium A-B interface (Cross 1977, 
Kaul and Kleinert 1980), which has the energy 0:; = 1.251f(T)fB, has the Z-vector 
oriented in the plane of the interface. Also, the metastable A-B wall exists (Schopohl 
1987, Salomaa 1988) with slightly higher energy or!) = 1.5c( T)fB and with the I-vector 
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oriented along the normal to the A-B wall. The A-B wall, which corresponds to the 
Thuneberg solution, has I-oriented along the normal to the wall to satisfy the boundary 
condition on the boundary of the vessel. According to the classification scheme devel- 
oped by Zhang et al (1987), the Thuneberg state belongs to symmetry class 11. This 
symmetry still contains the elements that prohibit the spontaneous supercurrent in the 
absence of an external mass current. Salomaa and Volovik (1989), within their model, 
found another surface state with the same symmetry class, 11. In this state the A phase 
is not fully developed near the boundary of the vessel. 

Zhang et a1 (1987), who made a symmetry classification of the surface states, have 
calculated the surface layer structure within the quasiclassical theory for different rough- 
nesses of the wall. They found another metastable state that has the same symmetry as 
the conventional one (the most symmetricclass, 17, in their classification), and therefore 
also has no spontaneous supercurrent. 

Here we show that the metastable surface state with a spontaneous supercurrent 
exists at least in the vicinity of the first-order A-B transition line TAB(P) on the T-P 
plane ( P  is the pressure). This surface state belongs to class 3 and also corresponds to 
the A-phase layer on the boundary separated from the bulk B phase by the A-B 
interface. However, as distinct from the Thuneberg state, this A-B wall is of the 
conventional type, with I parallel to the interface. Since at the boundary of the vessel I 
is normal to the wall and near the interface it is parallel to the wall, there is I-texture in 
the A-phase layer between the boundary and the A-B wall. This texture on the one 
hand stabilizes this surface structure and on the other hand produces the net mass 
supercurrent along the surface, which comes from that part of the orbital current that is 
proportional to CV X I .  

We now consider this new surface state in the vicinity of the A-B transition line 
TAB(P) where the bulk energies FB and F A  are close, and as a result the width of the A- 
phase layer near the boundary essentially exceeds the coherence length and the width 
of the A-B wall. In this case one may consider the A-B wall as a rigid A-B wall in bulk 
liquid, and for the texture in the A-phase layer one can use the London approximation 
instead of the Ginzburg-Landau theory, and therefore our considerations are valid not 
only at T, but also far from T,, i.e. near the TAB(P) line in its entirety. The energy of this 
surface structure as compared with the surface energy 09" of the conventional surface 
structure contains (i) the energy of the A-B wall, (ii) the surface energy of the A phase, 
which is less than ug" and equals zero for specular boundary conditions (Cross 1977), 
(iii) the bulk energy of the A-phase layer of thickness L ,  and (iv) the gradient energy of 
the I-field in the A-phase layer: 

aTw - ~ s j ' "  = GAB + OA - 09" + (FA - FB)L 

+ loL dx  [ K , ( V  I)' + KZ(I  * V X 1)' + K3 ] I  X (V X I ) [ ' ] .  (1) 

Here the x axis is along the normal to the wall with x = 0 on the boundary of the vessel 
and x = L on the A-B interface. 

In the presence of an external superfluid velocity field us one should add (v) the 
superfluid kinetic energy of the A-phase layer compared with the superfluid kinetic 
energy of the B phase, and (vi) the interaction of the velocity field with the orbital 
current, ,/orb, produced by the I-texture in the A-phase layer: 

L 

AO = Io dx  8[P!A(I' 0 s ) '  f P$ll x l's1' - PsBU;] f us ',/orb 
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L n  Jorb=jo d x j j [ C u , . V x I -  C , ( I ~ U , ) ( I ~ V X I ) ] .  (2b)  

The gradient energy of the I-field in the A-phase layer depends on the boundary 
condition for the I-vector on the A-B wall at x = L. For the equilibrium A-B wall in 
bulk liquid the I-vector is parallel to the wall; however, the texture in the A-phase layer 
tends to change this condition. Thus one must find the boundary condition in a self- 
consistent manner. We show here that in the vicinity of T A B  the boundary condition at 
the A-B wall ( I  is parallel to the wall) is not perturbed. We consider the planar texture 
in which I depends only on the x coordinate and is constrained in the (x, z )  plane with z 
being arbitrarily chosen along the wall: 

I = (cos ( ~ ( x ) ,  0, sin (~ (x ) ) .  ( 3 )  

We assume the following boundary conditions for I :  (~ (0 )  = 0 and a ( L )  = n/2 - 6, 
where 6 is the parameter of minimization which enters both the gradient energy and the 
energy of the A-B wall, aAB(6). The latter is minimal when 6 = 0, and therefore for 
small 6 one has 

(4) 
(0) aAB(6) = CTAB + Da2 

where D may be estimated from D = of!) - 0:;. Below it will be shown that, in the 
vicinity of T A B ,  the equilibrium 6 G 1 and may be neglected in calculating the structure 
of the I-field. 

In terms of ( ~ ( x )  the gradient energy of the I-field is 
L 

Fgrad = Io dx  (K1 sin2 (Y f K3 COS2 (Y>(~3,(u)~. ( 5 )  

Minimization of ( 5 )  with respect to (~ (x ) ,  taking into account the boundary 
conditions, gives the following results: 

X(W) = L E((Y ,  k)/E(nn/2 - 6 ,  k )  (6) 

Fgrad  = ( E ( n / 2  - 6 7 k) )*  K3/L  ( 7 )  

E(@, k )  = d u  vl - k 2  sin2 U (8) 

where 

0 

is the elliptical function and k 2  = ( K 3  - K1)/K3.  Further minimization of 
Fgrad -t (FA - FB)L with respect to L gives for L and Fgrad -t (FA - FB)L the following 
equations: 

L = V/K3/(FAE(x/2 - 6 ,  k )  

Fgrad + (FA - FB)L = 2 v K 3 ( F ~  - FB)E(n/2 - 6 ,  k ) .  
(9) 

(10) 
Finally, one should minimize (10) together with the energy of the A-B wall in (4) 

with respect to 6. Note that near TAB,  where (FA - FB) G FB, the size of the A-phase 
layer is large, L S 55, which justifies the proposed approach. This also leads to the small 
value of S. Since for small 6 6 1 one has E(n /2  - 6 ,  k )  = E(n /2 ,  k )  - S d m ,  the 
minimization with respect to 6 gives 

6 = d K l ( F A  - FB)/D.  (11) 
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This is small in the vicinity of T A B  which means that in this temperature region the A-B 
wall in the new surface state may be considered as rigid with the boundary condition 
6 = 0 ( I  is parallel to the A-B wall) which is practically unaffected by the I-texture in the 
A-phase layer. Thus the total energy of the new surface state in the leading approxi- 
mation for the small parameter (FA - FB)/FB is 

U r  - U:" = U f i  -k (0, - U:") -k 2 V / K 3 ( F A  - FB) E(nI2, V m ) .  (12) 

We now consider the symmetry and spontaneous supercurrent in the new state. 
The conventional surface state of class 17 is the most symmetric state with the 

following elements of symmetry: the continuous group of rotations Cz,x about the2 axis; 
time inversion symmetry T ;  and reflections R, and R, with respect to the planes (2, x) 
and ( y ,  x) respectively. In the surface state of class 11 with the A-phase layer near the 
boundary of the vessel, which was found by Thuneberg (1986), this symmetry group H I ,  
is broken into the subgroup Hll which contains the element C2,x (rotation by n about 
the x axis), and combined elements TRY and TR,. In our new metastable state the 
symmetry is broken further, with the only non-trivial element TRY: TRY I(x) = I(x). This 
corresponds to class 3 according to the classification scheme given by Zhang et a1 (1987). 
The direction of the y axis is arbitrary which reflects the degeneracy of the state of class 
3. 

In the states of classes 17 and 11 the spontaneous supercurrent along the surface, J ,  
orJy, is prohibited due to the symmetry element C2,x since C2.xJy.z = - Jy , z .  This element 
is absent in the new state and the element TRY of the new state allows the supercurrent 
along the y axis. This supercurrent is concentrated in the A-phase layer and comes 
from the orbital current Jorb of I-texture. According to (2b) and ( 3 )  and the boundary 
conditions for the Z-vector one has 

]orb = (h /M)Cj .  (13) 
The direction of the spontaneous supercurrent may be fixed by the external super- 

current with the superfluid velocity U , .  If the velocity U ,  is small the leading interaction 
of us with Zin (2) is linear in U,. This gives the orientation of the spontaneous supercurrent 
Jorb as opposite to U , .  In this case the total energy of the new state under external 
superflow as compared with the conventional state is 

(0)  symm - 0:" GAB + (0A - ) + 2d/K3(FA - F B  + ;(pi* - psB)U:) 

X E(n/2, dl - Kl/K3) - ( ~ / M ) C U , .  (14) 
In the above, we have found analytically a new surface state on the boundary of 3He- 

B which corresponds to a local minimum of the free energy in the vicinity of the entire 
transition line T A B  between 3He-B and 3He-A. This surface state belongs to symmetry 
class 3 according to the classification scheme given by Zhang et a1 (1987) which allows 
the existence of the mass supercurrent along the surface. In the vicinity of TAB the new 
state may be considered as an A-phase surface layer of large thickness, as compared 
with the coherence length, separated from the bulk B phase by a well defined A-B 
interface of conventional type. Far from T A B  the surface state cannot be separated 
into an A-phase layer and A-B wall, and our considerations cannot be applied here. 
However, this state has symmetry of class 3 ,  which is different from that of the previously 
considered surface states of classes 17 and 11, and this symmetry cannot change con- 
tinuously. Therefore, one should expect the state of symmetry class 3 to persist in a 
modified form well below T A B  until some critical temperature is reached at which it 
becomes unstable towards one of two other states. In principle, it is not impossible for 
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the metastable state with a spontaneous supercurrent to become absolutely stable 
far from TAB. Experimentally, the metastable state may be created via a continuous 
transition from 3He-A to 3He-B when the A-B wall moves slowly to the boundary of 
the vessel. 

GEV is grateful to the staff of the Low Temperature Laboratory of the Helsinki Uni- 
versity of Technology, whose unique experiments on rotating superfluid 3He stimulated 
this work. 
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